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An efficient Monte Carlo simulation method for bosonic reaction-diffusion systems which are mainly used
in the renormalization group �RG� study is proposed. Using this method, one-dimensional bosonic single
species annihilation model is studied and, in turn, the results are compared with RG calculations. The numeri-
cal data are consistent with RG predictions. As a second application, a bosonic variant of the pair contact
process with diffusion �PCPD� is simulated and shown to share the critical behavior with the PCPD. The
invariance under the Galilean transformation of this boson model is also checked and discussion about the
invariance in conjunction with other models are in order.
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I. INTRODUCTION

The reaction-diffusion �RD� systems have become a para-
digm for studying certain physical, chemical, and biological
systems �1�. In the study of the RD systems on a lattice via
Monte Carlo �MC� simulations, particles involved in the dy-
namics usually have hard core exclusion property. In other
words, MC simulations have been interested in the lattice
systems where multiple occupancy at a lattice point is pro-
hibited. These particles are often referred to as fermions, but
this paper prefers the term “hard core particles.” Meantime,
the renormalization-group �RG� calculations that have been
applied successfully to several RD systems are in many cases
based on the path integral formalism for classical particles
without hard core exclusion, or, if we are allowed to abuse
terminology, bosons �2–4�. On this account, the comparison
of the numerical studies to the RG calculations is sometimes
nontrivial.

There are two ways to fill a gap between numerical and
analytical studies. One is to make a path integral formula for
hard core particles which is suitable for the RG calculations.
Actually, this path has been sought and some formalisms are
suggested �5–7�. The other is to find a numerical method to
simulate boson systems. In this context, numerical integra-
tion studies of the equivalent Langevin equations to boson
systems have been performed �8–11�. However, it is not al-
ways possible to find an equivalent Langevin equation �12�.
By the same token, the applicability of this approach is
somewhat restricted. Thus, another numerical method is
called for. To our knowledge, no algorithm to simulate gen-
eral bosonic RD systems directly has been suggested and to
find such a algorithm is still a challenging topic.

This paper suggests an algorithm to simulate the bosonic
RD systems. Section II is devoted to a heuristic explanation
of the algorithm to simulate general bosonic single species
RD systems. In Sec. III, the numerical method applies to
some bosonic RD systems. At first, the single species anni-
hilation models with various conditions are simulated, along
with the comparison to the RG predictions. Then, a bosonic

version of the pair contact process with diffusion is dis-
cussed, focusing on the universality and Galilean invariance.
Section IV summarizes the works.

II. ALGORITHM

This section explains the algorithm suitable for MC simu-
lations of bosonic RD systems. Although the discussion in
this section is restricted to single species cases, the extension
to multispecies problems is straightforward.

The reaction dynamics of diffusing bosons is represented
as

nA→
�nm

�n + m�A , �1�

where n�0, m�−n, m�0, and �nm is the transition rate.
Each particle diffuses with rate D on a d dimensional hyper-
cubic lattice. The periodic-boundary conditions are assumed,
but other boundary conditions do not limit the validity of the
algorithm. Configurations are specified by the occupation
number �x��0� at each lattice point x. A configuration is
denoted as ��� which means ��x �x�Ld�, where Ld stands for
the set of the lattice points and the cardinality of Ld is Ld.
The master equation which describes stochastic processes
modeled by Eq. �1� takes the form �12,13�

�P

�t
= D �

	x,y

���x + 1�Êx,y − �x�P + �

n,m
�nm�

x
�f��x − m,n�Ĉx,m

− f��x,n��P , �2�

where P= P���� , t� is the probability with which the configu-
ration of the system is ��� at time t , 	x ,y
 means the nearest-
neighbor pair �x ,y�Ld� , f��x ,n�= ��x ! � / ��x−n�! is the
number of ordered n tuples at site x of the configuration ���,
and Êx,y and Ĉx,m are operators affecting P���� , t� such that

Êx,yP = P��¯ ,�x + 1,�y − 1, ¯ �;t� ,

Ĉx,mP = P��¯ ,�x − m, ¯ �;t� . �3�

The master equation implies that during infinitesimal time
interval dt, the average number of transition events for the
configuration ��� is*Corresponding author. Electronic address: psc@kias.re.kr
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E�dt,���� = dt�
x,n

�2dD�n,1 + �
m

�nm� f��x,n�

= dt�
x,n

�2dD�n,1 + �
m

n ! �nm�g��x,n� , �4�

where g��x ,n�= f��x ,n� /n ! = ��x

n � is the number of �nonor-

dered� n tuples at site x. Therefore, the first step for
MC simulations is to select one of n tuples with an equal
probability. For the convenience of description and better
understanding, we introduce a model dependent function
h��x ,n�=�ng��x ,n�, where �n takes 1 �0� if D�n,1+�m�nm is
nonzero �zero�. The meaning of �n is straightforward; we do
not have to consider the reaction dynamics with transition
rate zero �see below�.

The simplest way to implement the selection is as fol-
lows: First a site x is selected with probability Nx /M, where
Nx=�nh��x ,n� which will be called the number of accessible
states at site x and M =�xNx. Then, n is chosen with
probability h��x ,n� /Nx which is zero if �n=0. For this pro-
cedure, the array of the number of particles at all sites, say
�� ����x�=�x�, is necessary.

However, it is not efficient because there are too many
floating number calculations. For a faster performance, we
introduce two more arrays, say list� � and act� �� �. The array
list� � refers the location of any n tuple. Each element of
list� � takes the form �x ,��, where x is a site index and � lies
between 1 and Nx�1���Nx�. From � and ��x�, which n
tuple is referred by the array list� � is determined. If
��h��x ,0� , n=0 is implied. Else if ��h��x ,0�
+h��x ,1� , n=1 is meant. Else if ��h��x ,0�+h��x ,1�
+h��x ,2� , � indicates one of pairs at site x, and so on. In
case the total number of accessible states in the system is M,
the size of list� � is M and all elements of list� � should satisfy
that list�p�� list�q� if p�q �1� p ,q�M�. Hence, the ran-
dom selection of an integer between 1 and M is equivalent to
the choice of one n tuple among M accessible states with an
equal probability. The array act� �� � is the inverse of the
list� �, that is, list�s�= �x ,�� corresponds to act�x����=s.

After selecting x and n, the transition nA→ �n+m�A oc-
curs with the probability of n !�nm�t for all possible m,
where �t is independent from configurations. Provided
n=1 is selected, in addition to reaction processes, a particle
at x hops to one of the nearest neighbors with probability
D�t. To make the transition probability have a meaning, �t
should satisfy

�2dD�n,1 + �
m

n ! �nm��t � 1, �5�

for all n. Time is increased by �t /M. On average, this algo-
rithm generates E��t , ���� transition events during time in-
terval �t. After the system’s evolving, three arrays, �, list,
and act, are updated in a suitable way �see below�.

Through an example, how the system evolves in silico is
to be clarified. Consider a RD system with �n=0 for n�3
and n=0. In this case, Nx=�nh��x ,n�=g��x ,1�+g��x ,2�
=�x��x+1� /2 will be used. Assume that we are given
a configuration ��1�=2, ��2�=0, ��3�=1, and ��4�=3
�N1=3 , N2=0 , N3=1 , N4=6, hence M =10�; see Fig. 1.
Complete lists of two arrays list� � and act� �� � for this con-
figuration are illustrated on the left-hand side of Table I. The
algorithm starts from selecting one number between 1 and
M, randomly. Let us assume that 2 is selected, which makes
list�2� to be checked. Since list�2�= �1,2� and 2���1�, a
particle dynamics at site 1 will be attempted. Again assume
that a hopping to the site 2 whose probability is D�t occurs,
which results in a change of the configuration as shown in
Fig. 1. Accordingly, three arrays should be updated. Figure 2
shows how the evolution is coded �based on the language C�.
In this code, rho�x� is the number of particles at site

FIG. 1. An example of a configuration change of a one-
dimensional RD system with L=4 due to hopping. The black circle
signifies a particle and numbers below the horizontal line indicate
the lattice point. A particle at site 1 hops to site 2.

TABLE I. An example of making two arrays referring each other from the configuration shown in Fig. 1.
Two columns on the left �right� hand side correspond to the configuration before �after� the hopping event.

Before After

list�1�= �1,1� act�1��1�=1 list�1�= �1,1� act�1��1�=1

list�2�= �1,2� act�1��2�=2 list�2�= �4,6� act�2��1�=9

list�3�= �1,3� act�1��3�=3 list�3�= �4,5� act�3��1�=4

list�4�= �3,1� act�3��1�=4 list�4�= �3,1� act�4��1�=5

list�5�= �4,1� act�4��1�=5 list�5�= �4,1� act�4��2�=6

list�6�= �4,2� act�4��2�=6 list�6�= �4,2� act�4��3�=7

list�7�= �4,3� act�4��3�=7 list�7�= �4,3� act�4��4�=8

list�8�= �4,4� act�4��4�=8 list�8�= �4,4� act�4��5�=3

list�9�= �4,5� act�4��5�=9 list�9�= �2,1� act�4��6�=2

list�10�= �4,6� act�4��6�=10
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x�=�x� ,N�x� is the number of accessible states at site
x�=Nx�, and each element of list� � is treated as an array. The
first �second� for loop signifies the decreasing �increasing� of
the number of accessible states at site 1 �2�, which can be
used for any particle number decreasing �increasing� events.
The code generates the lists on the right-hand side of Table I.
Time is increased by �t /10. Then again choose one number
between 1 to 9, randomly, and so on.

Equipped with the numerical methods, Sec. III studies
some bosonic RD systems which show scaling behavior.

III. APPLICATIONS

A. Single species annihilation model

The algorithm explained in the previous section is applied
to a one-dimensional single species annihilation model
which corresponds to �nm=0 unless n=2 and m=−2. For
saving the writing effort, let us rename �2,−2��. The
renormalization-group calculation predicts that the annihila-
tion fixed point corresponds to �=� �3�. Infinite pair annihi-
lation rate means that two particles occupying the same site
by any chance will be removed instantaneously. Accordingly,
at most one particle can reside at each site. Hence, the boson
model with infinite annihilation rate is equivalent to the
diffusion-limited annihilation model �DLAn� of hard core
particles which can be solved exactly �14�. It is known that
the particle density of the DLAn starting from the random
initial condition decays as

��t� = lim
L→�

1

L�
x=1

L

�x�t� =
1


8	Dt
�1 + O�1/t�� . �6�

This behavior does not depend on the initial density. Since
renormalized coupling constant flows to the annihilation
fixed point, the asymptotic behavior of the density for finite
� is expected to be the same as Eq. �6�. Besides, it is ex-
pected that the smaller the value of �, the later the system
enters the scaling regime. Actually, these predictions are

tested for the annihilation model of hard core particles �15�.
However, to our knowledge, there is no satisfactory numeri-
cal test for the RG predictions using a boson model �16�.

The Poisson distribution is used as an initial condition,
which can be implemented if we randomly distributed �0L
particles on the lattice. For this distribution, the probability
that q particles reside at site x is

Px�q� = ��0L

q
�� 1

L
�q�1 −

1

L
��0L−q

�
�0

q

q!
e−�0, �7�

where L is assumed to be sufficiently large and q
�0L. Us-
ing the algorithm explained in the previous section and vary-
ing D, �, and �0, we simulated the one-dimensional annihi-
lation model. The system size is 216 and the number of
independent samples is 200 for each data set.

Figure 3 shows the decaying behavior of the density for
D= 1

2 , 1
4 , 1

8 , and 1
16 with �0=1 and �= 1

2 . Each curves ap-
proaches to 1/
8	Dt as the RG calculation predicted.
We also check the initial condition dependence, by simulat-
ing systems with various initial density 2, 1, 1

2 , and 1
4 with

D= 1
2 and �= 1

2 . Figure 4 shows the initial condition indepen-
dence of the asymptotic behavior. Finally, we also confirm
that the asymptotic behavior is not affected by �, see Fig. 5.
As expected, the system with smaller � enters the scaling

FIG. 2. A program which updates three arrays �� �, list� �, and
act� �� � after the hopping event shown in Fig. 1.

FIG. 3. �Color online� A log-log plot of ��t�
8	Dt as a function
of t for various D with �= 1 � 2 and �0=1. All curves approach to 1
as t increases. Inset: same, but density is not multiplied by 
8	Dt.

FIG. 4. �Color online� A log-log plot of ��t�
4	t vs t for various
�0 with D= 1

2 and �= 1
2 . In the asymptotic regime, all data sets show

the same behavior.
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regime later. The MC simulation for bosonic annihilation
models confirms the predictions of the RG study �3�.

B. Pair contact process with diffusion

The pair contact process with diffusion �PCPD� is a RD
system of diffusing hard core particles with two competing
dynamics of 2A→3A �fission� and 2A→0 �annihilation�,
which shows a continuous transition �17�. At first sight, the
bosonic variant of the PCPD might be regarded as the boson
model with �nm=0 except �21 and �2,−2. However, this vari-
ant does not show a continuous transition and there is no
steady state in its active �fission dominating� phase �18�. To
have a well-defined steady state in all phases, a mechanism
to keep the density from blowing up is required. Introducing
a triple reaction such as 3A→2A, one can get a model with
well-defined steady states. Although the boson model with
�nm=0 except �21, �2,−2, and �3,−1 has been expected to show
a continuous transition �17�, MC simulation results for this
type of boson model which will be called “BPCPD” has yet
been reported in the literature, although a parallel update
bosonic model with so-called soft-constraint was studied
�19�.

Using parameter values D= 1
2 , �3,−1= 1

6 , �2,−2= p /2, and
�21= �1− p� /2 where p is the tuning parameter, the critical
behavior of the BPCPD is studied. As an initial condition, we
set �x=2 for all x�1�x�L�. Figure 6 shows the decaying
behavior at criticality of two order parameters, the particle
and pair densities which are defined as

�1�t� =
1

L
�

x
	�x
t,

�2�t� =
1

L
�

x
	�x��x − 1�
t, �8�

where 	 
t means the average over ensembles at time t. The
system size in use is 215 and all samples �around 103 samples
are independently simulated� up to observation time ��2.5
�106 MC steps� have at least one site with two or more
particles. The critical point is found to be pc=0.148 79�1�
with the critical exponent 
 /��=0.205�5� which is estimated
from the effective exponent

− ��t� =
ln��1,2�t�� − ln��1,2�t/m��

ln m
, �9�

with m=10. At criticality, ��t� approaches to 
 /�� as t goes
to infinity. The simulation results are consistent with the pre-
vious works within error bars �19,20�. Hence, we conclude
that the BPCPD has the same critical scaling with the PCPD.

Following the path integral formalism for bosonic RD
systems �2�, the action of the BPCPD, S=�dt dxL, after tak-
ing the �naive� space-time continuum limit has the form

L = �̄��t − D�2�� + g1�̄�2 + �3�̄�3 + g2�̄2�2 + ¯ ,

�10�

which is the same as one studied in Ref. �21� which is de-
rived from path integral formalism for the exclusive particle
systems introduced in Ref. �6�. It is argued, however, via RG
calculations �21� and numerical studies �20,22� that Eq. �10�
is inappropriate for studying the critical behavior of the
PCPD using the RG techniques. Nonetheless, we will show
that the Galilean invariance �GI� of the BPCPD, which is
anticipated from Eq. �10�, is still correct in the strong sense
�see below�.

For some RD systems, biased diffusion only changes non-
universal constants such as the critical point and does not
affect the critical behavior. Examples are the driven branch-
ing annihilating random walks �DBAW� studied in Ref. �20�.
Such systems will be called to have the GI in the weak sense
�GIweak�. Why the critical point is dependent on the bias
strength is understandable within the framework of Ref. �7�.
Using the path integral formalism for hard core particles in-
troduced in Ref. �7�, the terms appearing in the action due to
the bias with the strength v take the form

Lbias = v��̄x���x − �̄x
2�x���x� , �11�

where �� is the lattice gradient defined as ���x���x+e�
−�x−e�

� /2 with e� the unit vector along the bias direction.
The derivation of Eq. �11� is shown in the Appendix. The
Galilean transformation gauges away the first term in Eq.
�11�, but cannot remove the second term. Since the second
term in Eq. �11� is irrelevant in the RG sense for the DBAW,

FIG. 5. �Color online� A log-log plot of ��t�
4	t vs t for various
� with D= 1

2 and �0=1. Although the system with smaller � enters
the scaling regime slowly, all curves eventually meet for large t.

FIG. 6. �Color online� Time dependence of the particle and pair
densities multiplied by t
/�� with 
 /��=0.205 in semilogarithmic
plot at criticality for the BPCPD. Inset: effective exponents of the
order parameters at p=0.148 79.
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this does not affect the universal behavior, but the very ex-
istence of this irrelevant term can change the critical point.
Therefore, the DBAW is of the GIweak. Meanwhile, the
PCPD is not of the GI even in the weak sense �20�. Since it
is shown that the field theory with the action �10� is not
viable �21�, we cannot extract any information from Eq. �11�
concerning the driven pair contact process with diffusion
�DPCPD�. To understand the DPCPD and the PCPD from the
field theoretical point of view, more elaborated studies are
required.

The bias diffusion of bosons does not generate the second
term in Eq. �11�. In this context, the Galilean transformation
totally gets rid of the effect of bias for bosons. Hence, two
systems with or without bias have the same probability dis-
tribution, let alone the critical behavior. These systems will
be called to have the GI in the strong sense �GIstrong�. Con-
sider a one-dimensional bosonic RD system with reaction
dynamics in Eq. �1� in which each particle hops to the right
�left� with rate DR�DL�. The GIstrong for this model means
that whatever value DR takes with the constraint DR+DL
=2D �constant�, the system shares the probability distribu-
tion with the unbiased model �DR=DL=D�. It is checked
numerically for various DR with DR+DL=1, whether the
BPCPD has the GIstrong or not. We observed that the par-
ticle and pair densities have the same behavior at the same p
within statistical error �not shown here�. In Fig. 7, space-time
configurations of the BPCPD models with the unbiased dif-
fusion �DR=D= 1

2
�, fully biased diffusion �DR=2D=1�, and

the Galilean transformation for the full bias case are shown.
After Galilean transformation, no noticeable difference be-
tween biased and unbiased cases is observed. For compari-
son, we present in Fig. 8 the space-time configuration of the
PCPD and the DPCPD studied in Ref. �20�. As the Galilean
transformed space-time configuration shows, the bias cannot
be removed in the DPCPD. The Galilean transformation gen-
erates the biased motion of the paired particles which shows
the existence of the relative bias between isolated particles
and paired ones. Although the validity of Eq. �10� as an
appropriate action for the RG study regarding the PCPD is
rather problematic, any single species bosonic RD systems
with on-site reactions are conjectured to have the GIstrong.

The discussion about the GIstrong should be restricted to
boson models with random sequential update dynamics. If
the dynamics occurs in a parallel way as in Ref. �19�, the GI
argument from the invariance of the local action like Eq. �10�
under the Galilean transformation is not directly applicable.
Even worse, the one dimensional system with pR=1 �for the
definition of pR, see the next paragraph� is reduced to a
single-site problem which is not expected to show phase
transition. Notwithstanding, except this pathological case,
the soft-constraint PCPD �SCPCPD� studied in Ref. �19� is
expected to have the GIweak �23�.

To understand what is happening in the SCPCPD, let us
explain the dynamics of the model. During unit time,
changes of a configuration occur in two steps. At first, every
particle hops to the right �left� with probability pR�pL� and
stays still with probability pS�pR+ pL+ pS=1�. In Ref. �19�,
pR= pL= 1

2 and pS=0 are used. After the hopping events,
reactions occur at all sites. Rather interestingly, the model
with pL=0 is statistically equivalent to the system with pS
=0 provided pR is the same. When pS=0, particles at the
even sites do not interact with those in the odd sites. For
example, see Fig. 1 and regard the left figure of it as a con-
figuration for the SCPCPD with pS=0 under the condition of
the periodic boundary. At the end of the hopping event, par-
ticles at sites 1 and 3 �2 and 4� move on to sites 2 and 4 �1
and 3�. Thus, a system with size 2L �let us call it system A�
can be considered two independent systems with size L �call
it system B�, if we interpret the hopping events to the left in
the system A as a staying event in the system B. Since the
system with pL=0 has a bias effect in diffusion except the
pathological case of pR=1, the GI for the SCPCPD is in a
sense predictable.

As a final remark, we would like to mention how the
DPCPD behavior can be observed in the BPCPD model. As
explained before, the bias applied to all particles has no ef-
fect. As was done for the SCPCPD in Ref. �20�, if different
bias is applied to a particle at singly occupied sites and a
particle at multiply occupied sites, the DPCPD behavior such
as mean-field-like exponents, logarithmic corrections, etc.,
was observed �not shown here�. This unusual bias cannot be
included in the action like Eq. �10� in a simple way, so this
DPCPD behavior is not contradictory to the GIstrong of the
BPCPD.

FIG. 7. �Color online� Space-time configuration for the unbiased
and biased BPCPD models at criticality. Blue �red� dots represent
the sites with only one particle �at least two particles� and white
dots stand for the empty sites. �a� and �b� are configurations of the
BPCPD with DR= 1

2 and DR=1, respectively. �c� is the same as �b�
except that the space coordinate is Galilean transformed with
v=DR−DL=1.

FIG. 8. �Color online� Space-time configuration for �a� the
PCPD and �b� the DPCPD at criticality studied in Ref. �20�. Blue
�red� dots represent the isolated particles �particles which are mem-
bers of pairs� and white dots stand for the empty sites. Figure �c� is
the same as �b� except that the space coordinate is Galilean trans-
formed with v=1.
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IV. SUMMARY

To summarize, an efficient algorithm is proposed to simu-
late the general bosonic reaction-diffusion systems and ap-
plies to the single species annihilation model and the bosonic
variant of the pair contact process with diffusion.

For the single species annihilation model,
renormalization-group predictions are confirmed numeri-
cally. The BPCPD model is found to belong to the PCPD
universality class and maintains the Galilean invariance in
the strong sense. Due to the lack of the analytical predictions
for the PCPD, only the comparison of our results to pub-
lished simulation results are possible.
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APPENDIX: DERIVATION OF Eq. (11)

From the path integral formalism for RD systems of hard
core particles introduced in Ref. �7�, Eq. �11� will be derived
in this appendix. Since the master equation is linear and the
formalism in �7� does not mix different dynamics, it is
enough to consider the diffusion of hard core particles. For
more detailed accounts, see Ref. �7�.

In general, the master equation becomes the imaginary
time Schrödinger equation with �in general non-Hermitian�
Hamiltonian Ĥ such that

�

�t
�P;t
 = − Ĥ�P;t
 , �A1�

where �P ; t
=����P���� , t�����
 and ����
=�x��x
 with �x tak-
ing either 1 �occupied� or 0 �vacant�. To write down the
Hamiltonian, introduced are the creation and annihilation op-
erators for hard core particles in single species models which
satisfy the following commutation relations:

�âx
†, âx� = 1, �âx, âx� = �âx

†, âx
†� = 0,

�âx, âx�� = �âx
†, âx�

† � = 0. �A2�

Actually, these operators are nothing but the Pauli matrices.
Using creation �annihilation� operators, terms appearing in
the Hamiltonian due to diffusion of hard core particles in the

single species RD systems can be written as ĤD=�xĤx with

Ĥx = �
i=1

d ��D + �i,�
v
2
��n̂xv̂x+ei

− âxâx+ei

† �

+ �D − �i,�
v
2
��n̂xv̂x−ei

− âxâx−ei

† �� , �A3�

where n̂x= âx
†âx is the number operator, v̂x=1− n̂x , ei is the

unit vector along i direction, and hopping is biased along the
� direction.

The differential equation of the generating function F
which is defined as

F���̄�;t� � �
���

��
x

�̄x
�x�P����;t� = 	��̄��P;t
 , �A4�

where

	��̄�� � �
x

�	0�x + �̄	1�x� , �A5�

takes the form

�

�t
F = − 	��̄��Ĥ�P;t
 . �A6�

The generating function �A4� corresponds to Eq. �15� of Ref.
�7� with the prescription �18a� in Ref. �7�. Since

	��̄��âx
† = �̄x�1 − �̄x�̂x�	��̄�� , �A7�

	��̄��âx = �̂x	��̄�� , �A8�

	��̄��n̂x = �̄x�̂x	��̄�� , �A9�

	��̄��v̂x = �1 − �̄x�̂x�	��̄�� , �A10�

where �̂x=� /��̄x, one can find the partial differential equa-
tions for the generating function such that

�

�t
F = − L̂���̄�,��̂��F , �A11�

with normal ordered evolution operator L̂ which reads

L̂���̄�,��̂�� = �
x
�v��̄x���̄x − �̄x

2�̂x���̂x�

+ D�− �̄x�x
2�̂x + �

i

��̄x − �̄x+ei
�2�̂x�̂x+ei��

+ �terms due to reactions� , �A12�

where �x
2 is the lattice Laplacian defined as �x

2f�x�
=�i=1

d �f�x+ei�+ f�x−ei�−2f�x��, and �� is the lattice gradient
along the � direction defined as ��f�x�= �f�x+e��− f�x
−e��� /2. Since Eq. �A11� is a linear equation, we can write
down the path integral solution with the action �7�

S =� dt��̄�t� + L���̄�,����� , �A13�

which completes the derivation of Eq. �11�.
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